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J. Phys.: Condens. Matter 1 (1989) 4465-4468. Printed in the UK 

LETTER TO THE EDITOR 

The quenching of the quantised Hall resistance at low 
magnetic fields 

R Johnston? and L Schweitzerj: 
t GEC Hirst Research Centre, Wembley, Middlesex H A 9  7PP, UK 
$ Physikalisch-Technische Bundesanstalt, Bundesallee 100,33 Braunschweig, Federal 
Republic of Germany 

Received 2 May 1989 

Abstract. The quenching of Hall resistance at low magnetic fields is considered theoretically 
and is shown to be contained in a theory proposed recently to explain the quantum Hall 
effect without invoking localisation. In this model the quenching of the Hall voltage arises 
from the mixing of edge states. The Hall resistance of a two-dimensional system, which is 
confined by a parabolic potential well, is calculated and the results compare well with 
observations on electrostatically confined samples reported recently by Ford and co-workers. 

The recent observation of the complete quenching of the Hall voltage at low magnetic 
fields in narrow two-dimensional conductors by Roukes and co-workers [ l ]  seems not 
to have received sufficient attention. Although experimentally reproduced in elec- 
trostatically confined systems by Ford and co-workers [2], and theoretically addressed 
in two Letters [3,4], the main message of the experiments, namely the breakdown of 
the commonly accepted theories of the quantum Hall effect (QHE), has apparently not 
been noticed. 

Of the approaches taken using the localisation model, both the linear response theory 
of the QHE [5,6], and the edge state descriptions [7-91, which do not really treat 
the assumed disorder, are in principle not able to account for the new experimental 
observations [ 1,2].  

Since in the experiments on samples that show the QHE the Hall voltage vanishes at  
low magnetic fields ( B  < 0.2 T )  without simultaneous vanishing of the current through 
the sample, the above-mentioned theories turn out to be inapplicable. If for instance a 
zero ‘applied’ Hall field is taken as the perturbation in the Kubo formula [5,6] the 
current will also vanish. The same happens if the ad hoc assumed chemical potential 
difference is taken to be zero [7-91. This clearly shows that the commonly accepted 
method of calculating the Hall current as a response to an externally applied Hall voltage 
is untenable and a completely different approach to the problem has to be taken. 

In this Letter the low-field quenching of the quantised Hall resistance is shown to be 
contained already in a theory, which has been proposed recently [lo] to explain the 
QHE without assuming Anderson localisation. In contrast to what is done in the usual 
approaches, the Hall voltage is not treated as an input quantity but the current Zthrough 
and the Hall voltage U, across the system are calculated within the theory as a response 
to an applied electromotive force (battery) and the perpendicular magnetic field B .  This 

0953-8984/89/274465 + 04 $02.50 @ 1989 IOP Publishing Ltd 4465 



4466 Letter to the Editor 

view is in accordance with the experimental situation, where both the current and the 
Hall voltage are measured to give the Hall resistance RH = UH/Z. 

In this new theoretical description [lo], an electric field pulse along the sample 
disturbs the equilibrium state of the two-dimensional electron gas. The non-equilibrium 
density matrix is derived by linearising the von Neumann equation in the electric pulse 
perturbation. The resultant density matrix is used to calculate the current and the Hall 
voltage, from which the Hall resistance is obtained. RH can be expressed in terms of the 
eigenvalues E,(k) and eigenstates In, k )  of the unperturbed system. In the limit T+ 0 
equation (4.16) of [lo] gives the Hall resistance: 

The {ki,,} are the set of solutions of E,(k)  = EF, where EF is the Fermi energy, and Wis 
the contact region, where the chemical potential is probed. It is now possible to calculate 
the Hall resistance for a particular system, provided the eigenvalues and eigenfunctions 
are given. In this Letter the simple parabolic well model is chosen for which the energy 
spectrum and the wavefunctions are known analytically [ l l ,  121 in order to demonstrate 
the quenching of the Hall effect. It has been shown [13, 141 that a square well potential 
is better suited for modelling broader systems, and it is also possible to express the 
eigenvalues and eigenfunctions as power series in terms of the system parameters, where 
the expansion coefficients have to be calculated numerically [E]. For the present 
purposes, however, the choice of the parabolic well potential, which may be more 
appropriate in the case of a narrow electrostatic confinement [2], will suffice to dem- 
onstrate the low-field quenching but at the sacrifice of exact quantisation of RH which is 
expected for broader systems, where a square well potential would be needed. 

The following one-particle Hamiltonian describes the motion of non-interacting 
electrons in a two-dimensional system with confining parabolic well potential in the y 
direction centred at y = 0 and a perpendicular magnetic field B [ 11, 121: 

where w 2  = U: + w f ,  U, = eB/m and Yo = (p,/eB)w:/w2. Applying periodic bound- 
ary conditions in the x direction, the solution of the Schrodinger equation Hln ,  k )  = 
E,(k)ln, k )  gives the eigenvalues 

E n ( k )  = hw(n - i) + ( h 2 / 2 m ) k 2 ( w i / ~ 2 )  (3) 

with n = 1,2 ,  . . , , and eigenfunctions 

( x ,  yJn ,  k )  = eik”(mw/~76n~2)1/4[2n-1(n - I ) ! ] - ~ / ~  e-22/2 H,-,(z) (4) 
where {H,} are the Hermite polynomials, and z = (mo/h)”’(y - Yo).  

Inserting the spectrum and eigenfunctions into ( l ) ,  and performing the integral over 
k ,  gives the following expression for the Hall resistance of the parabolic well model 
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Figure 1. The Hall resistance at T = 0 K as a function of magnetic field B for three values of 
the potential parameter wo = 1 x lo'", 5 x lo'", 1 x 10" s-'. The electron line density isp = 
5 x IO'" m-l, and A = 8 x m. 

considered: 

where the symmetry of the system with respect toy = 0 was taken into account, and the 
{k,} are given by 

k ,  = { ( 2 m / f i 2 ) ( w 2 / w ~ ) [ E ,  - hw(n - 8)]}'" (6) 
andz: = -[-A 3 ( h k , / e B ) w ~ / w 2 ] .  Sinceinthe parabolicwellmodelthesystem 
has no sharp physical edges, the integral over y, which corresponds to the contact region 
W where the Hall voltage is probed, was taken between the limits --CQ and -A. The 
results, however, do not essentailly depend on the lower limit as long as it remains 
outside the effective system width. 

In figure 1 the Hall resistance R, is shown as a function of the magnetic field B ,  for 
three different values of the potential parameter. The striking resemblance to the results 
of Ford and co-workers [2] for the strongly electrostatically confined samples is obvious. 
The low-field quenching of the Hall resistance is clearly observed as well as the non- 
linear increase of the curves with the magnetic field strength. Notice that, due to the 
neglect of the spin splitting in the model, the plateau value of R, deviates from the 
quantised value already fori  = 2. A second difference comes fom the finite temperatures 
in the experiments, so the low-field oscillations are not always resolved. In figure 2 RH 
is shown for wo = 1 x 1O1O sP1 but the particle density p is smaller as compared with the 
first curve in figure 1. It is not clear how wo and p are changed simultaneoulsy in the 
experiments by changing the gate voltage. The inset of figure 2 shows the low-field 
quenching in detail. The conjecture of Roukes and co-workers [ l ] ,  that the Hall resist- 
ance assumes a last plateau, from which it drops to zero when lowering the magnetic 
field, is not corroborated by the present investigation. As can be seen from the inset of 
figure 2, the quenching has already started at band level index n = 13 although there are 
23 subbands occupied in the limit B -+ 0. ' 
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Figure 2. The Hall resistance at T = 0 K versus B for oo = 1 X 10" SKI, p = 3 X lo8 m-l and 
1, = 2 x lO-'m. The inset shows thelow-field behaviourin detail. The quenchingofR, starts 
at band index n = 13 and tends to zero for the last index n = 23. 

In this theory the mechanism that is responsible for quenching the Hall voltage at 
low magnetic fields is edge state mixing. Edge states are present in the parabolic potential 
model as well as in the square well case. For this reason it is expected that the Hall 
voltage will be quenched in the square well model too, but the dependence of the Hall 
resistance on the magnetic field remains to be calculated. It is not clear how much, if 
any, of the structure shown in figure 2 remains in the square well model. As the model 
with a square potential well is expected to be of more relevance to the experiments on 
narrow wires by Roukes and co-workers [I], it is hoped that the calculation can be 
performed in the near future. It is proposed that strong indications of the detailed 
structure shown in figure 2 have already been observed by Ford and co-workers [2] in 
experiments on electrostatically confined systems. 

We thank B Huckestein and W Woger for helpful discussions. 
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